ANALISIS KESTABILAN MODEL PERSAMAAN GERAK KINCIR AIR

AYU FITA PURWANINGSIH

Abstract


Abstrak


                Banyak sekali penerapan dari persamaan diferensial dalam dunia sains. Salah satunya dalam bidang sistem kinematik, yakni pada sistem gerak kincir air. Persamaan gerak kincir air dikembangkan dan disederhanakan oleh W.V.R Malkus pada tahun 1970 ,yang menarik dalam persamaan sederhana kincir air ini memiliki perilaku chaos yang terus berkembang.  Adanya perilaku chaos tersebut dapat diketahui dengan menganalisa perubahan kestabilan dan titik-titik bifurkasi. Pada skripsi ini penulis membahas tentang rekonstruksi persamaan gerak kincir air, kestabilan titik kritis dari persamaan tersebut, dan analisis titik bifurkasi pada persamaan tersebut.


Kata kunci: model persamaan gerak kincir air, kestabilan, bifurkasi


 


Abstract


                Many application of differential equations in science. One of them in the field of kinematic systems, namely the motion system waterwheel. Waterwheel equations of motion are developed and simplified by WVR Malkus in 1970, which is interesting in this waterwheel simple equation has chaotic behavior that continues to grow. The existence of the chaotic behavior can be determined by analyzing the changes in stability and bifurcation points. In this paper the author discusses about reconstruction of motion waterwheel equation, the stability of the critical points in that equation, and analyzes of a bifurcation points in that equation.


Keywords: the equation of motion waterwheel, stability, bifurcation


Full Text: PDF

Refbacks

  • There are currently no refbacks.